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Abstract

A novel method for deconvolving overlapped peaks in chromatograms is proposed. The basic idea of this method consists
of finding a set of parameters which characterize the shape of the overlapped peaks and using a multi-layered perceptron
network for quantitatively correlating the parameters with the percentage area of an individual peak. The proposed method
performs very well with high accuracy and less computing time compared to other conventional methods.
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1. Introduction

In chromatograms each signal peak corresponds to
some kind of substance and its quantity can be
calculated from the area under the peak. However,
many substances have their peaks located very close
to each other and they are overlapped in the chro-
matogram. Hence, one of the important tasks of
chromatogram data processing is to deconvolve the
overlapped peaks, and find the percentage area
belonging to each individual peak.

At present, the methods for deconvolving over-
lapped peaks can be categorized into three kinds:
methods based on geometry, algebra and pattern
recognition. The geometrical methods, such as verti-
cal line splitting, tangent line splitting and triangle
approximation, are based on simple principles, and
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the computing times needed are very short; therefore,
these methods are often used in real-time processing
in spite of their poor accuracy. As for the algebraic
methods, the most conventional approach is based on
curve fitting, the principle of which is to represent
peaks by certain analytical functions with some
undetermined parameters and optimize these parame-
ters to approximate the actual chromatogram curve,
and the individual peak area can be calculated with
the optimized parameters after the precision of
approximation is satisfied. However, the optimization
procedure requires relatively long computing times
such as a couple of seconds, so that this method type
can hardly be employed in real-time processing,
where people would like to cut the processing time
down to some milliseconds. Moreover, the precision
of the algebraic methods can not be guaranteed. The
methods based on pattern recognition have good
prospects and have been developed quickly in recent
years. The method proposed in this paper is one of
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these and is aimed at both high accuracy and a
reduced computing time requirement.

2. Basic concepts

Generally, the peaks in chromatograms can be
described by an asymmetric gaussian distribution
(AGD) function, which contains four parameters
indicating the peak height, width, position and
asymmetry, and is usually expressed as follows:

h(t)=Hexp[—%(t;T)2] (1)

where ¢ is the abscissa, A(r) is the ordinate, i.e. the
peak intensity which changes with 7, H is the
extreme intensity or height of the peak, 7 is the
position of the peak extremity on the abscissa, o is
the parameter denoting the peak width and
asymmetry, in which o=« when <7, and o=8
when t=7, where o« and B are the horizontal
distances from the left or right inflection point to the
vertical line through the peak extremity; a+ B is
proportional to the peak width, whereas a/f8 de-
termines the degree of asymmetry.

According to Eq. (1), every peak can be exclu-
sively determined by four parameters, H, T, @ and 8.
Therefore, two overlapped peaks can be determined
by eight parameters, i.e., H,, T, «,, B,, and H,, T,,
a,, f3,. Since the start point of the abscissa and the
scale of the coordinates are taken arbitrarily, it is
convenient to set H,=1000, 7,=0, and «, =100,
and only the other five parameters are left unde-
termined.

In fact, taking account of some particular hypoth-
eses, the number of free parameters can be further
reduced. For example, in the chromatogram the
width and asymmetry of adjacent peaks can be
assumed to take the same values, so only three of the
above five parameters are free.

3. Characteristic parameters

For two adjacent peaks, represented by H,, T, «;,
B, and H,, T,, «,, B, respectively, there are four
inflection points on the overlapped peaks curve, or
four extreme points A, B, C, D on the first-derivative
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Fig. 1. Distinguishably overlapped peaks and corresponding first-
derivative curve.

curve, correspondingly, whose coordinates are (¢,,
d,), (tg, dy), (tc, dc), and (¢, d,) respectively,
where d denotes the intensity of the first derivatives.
Generally speaking, the overlapping formed by two
peaks can be classified into three kinds, namely:

1. Relatively distinguishable, i.e., d,, d->0, and dj,
d, <0, as shown in Fig. 1,

2. Front-shoulder overlapped, i.e., d,, dg, d->0 and
d, <0, as shown in Fig. 2, and

3. Rear-shoulder overlapped, i.e., d, >0 and dg, d,
d, <0, as shown in Fig. 3.

Different kinds of overlapped peaks may have
diverse shapes with one or three extreme points;
however, their first-derivative curves have similar
shapes, i.e., they show a ‘‘max.-min.-max.-min.”
sequence as illustrated in Figs. 1-3.

In order to work out a general solution, it is better
to find the area percentage of any one of the
overlapped peaks, rather than to evaluate the abso-
lute values of areas, since the absolute peak areas are
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Fig. 2. Front-shoulder overlapped peaks and corresponding first-
derivative curve.
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Fig. 3. Rear-shoulder overlapped peaks and corresponding first-
derivative curve.

determined by the actual coordinate scales in differ-
ent cases. Obviously, the relative area should have a
relationship with the relative widths and heights of
the two overlapped peaks. Two dimensioniess pa-
rameters defined as

Ig — 1A

Py (g — 1)+ (ty — 1)
e =1y

P, =

(tg — 1) Tty — 1)
are used to denote the relative width, and three

dimensionless parameters defined as

___da __ds __dc
Ps_dA_de p4‘dA_de ps_dA_dD

are used to denote the relative heights of the
overlapped peaks. These dimensionless groups are
called the characteristic parameters.

There must exist some relationship between these
characteristic parameters and the area percentage of
an individual peak, but the explicit expression of the
relationship can hardly be derived. Considering the
requirements of simulating an unknown implicit
function, the artificial neural network (ANN) was
selected to express this kind of relationship. For
convenience, the multi-layered feed-forward (MLF)
network is used and trained according to the error
back-propagation (EBP) strategy.

4. Training the artificial neural networks

In order to make application practical, the follow-
ing section will be restricted to the overlapped peaks

which are composed of two individual peaks only.
We hypothesize that the chromatography peaks can
be described by the AGD function and denote the
two individual peaks as peak 1 and peak 2, where
peak 1 is regarded as the reference peak and we
assign its parameters as 7, =0, H =1000, a, =100,
and B,=1009®,, where &, is a variable factor
depicting the asymmetry of peak 1. As mentioned
above, the width and asymmetry of two adjacent
chromatography peaks can be assumed to be equal,
and are expressed in following equations:

a,+B,=a,+ B,,and o, /B, = a, /B,
From the above relationships we obtain:
a, = a, = 100, and B, = B, = 1009,

Since the area of an AGD peak is A= V@ /2H(a +
B). the percentage area of peak 1 to the whole
overlapped peak area is:

Q, =A/A+A)=H/H +H,)
and, hence, it follows that:
H,=H(1-0)/0,

According to the above equations, all the parameters
for the two individual peaks can be determined when
the asymmetry factor of peak 1, @, the percentage
area of peak 1, Q,, and the position of peak 2, T,
are given. In this way, the first-derivative curve of
the two overlapped peaks can be readily evaluated.

To form a set of data for training the MLF, assign
@, =0.1, 0.2, 05, 1, 2, 5, 10 and Q,=0.1, 0.2,
0.3,..., 0.9. Since two peaks are overlapped complete-
ly when 7,=T,, and almost not overlapped when
T,=T,+3(B,+a,), the space between O and
300(1+ @,) was partitioned and we got ten well-
distributed values of T,. In this way, 630 patterns
were obtained, each pattern a vector composed of p,
Dy» Py Ps Ps, and the corresponding Q, is its
counterpart. For training the ANN we use the vector
(pys Pss D3> Pa» Ps) as the network input and Q, as
the target output.

The MLF network used consists of 5 nodes in the
input layer, 10 nodes in the hidden layer, and 1 node
in the output layer. By systematic tests, we found the
accuracy of the final results was not very much
related to the number of hidden layer nodes such as
10, 15, 20 or more, so the lower number of 10 was
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selected. The processing function of the node is the were used as the network inputs, and the network
Sigmoid function, i.e., was then trained in the same way as above. The

average absolute error between the target and the
r; = L1 +exp(=s; +6) network output decreased to 0.00033. Though the

error is still small, it is much bigger than the one
generated when five parameters are used. According-
ly, it may be deduced that, though the other two
characteristic parameters are redundant in a physical

where s; and r; are the input and the output of node j
respectively, and 6, is the threshold of node j. The
input of node j is the sum of the multiplication of r,

and w;, sense, they help to train the network. To test the
robustness, we added random noises to the five
S; :E" Wik inputs with a maximal 10% relative error, the
¢ relative errors of the network outputs never exceeded
where r, is the output of the last layer node & and w, 6%; this reveals the stability of net against noises,
is the weight connecting nodes j and k. The BP which is one of the advantageous features of ANN.
algorithm [1] was used to train the weights and A more valuable test performed was that even when
thresholds in the above network. We initialized the five characteristic parameters from various over-
net weights at random, and set the momentum rate lapped peaks synthesized by the exponentially modi-
and learning rate to 0.9 and 0.7, respectively. In fied Gaussian (EMG) model [2,3] were taken, the
training, we randomly selected 500 out of the above relative error of the network outputs seldom ex-
630 patterns to train the net and used the other 130 ceeded 4%; this shows the insensitivity of the ANN
patterns to cross-validate the net performance. After method to the peak model.
3000 iterations, the average absolute error between It is worth noting that the way of selecting the
the target and the network output decreased to a characteristic parameters is not casual. In fact, when
small value, 0.00007, and then the training was p; was substituted by another dimensionless group
ended. d, /(d- —dg), no matter how the network structure is
Denoting the input, hidden, and output layers as reformed, the average absolute error reached is
A, B and C, all the weights and thresholds obtained always greater than 2.7, and the network output is
after training are shown in Table 1. As far as the very different from the target, which reveals that the
overlapped peaks of chromatography are concerned, network does not depict the expected relationship.
it has been already pointed out that only three When three or more peaks are overlapped, accord-
characteristic parameters are necessary for determin- ing to the AGD function, 4n parameters are needed
ing the individual peak percentage area; the others to determine the overlapped peaks, where n is the
are redundant. Therefore, a test was made such that number of individual peaks. As mentioned above, we
only three characteristic parameters, p,, p, and ps, can set the position, height and width of the first
Table 1
Weights and thresholds of the ANN after training
A, A, A, A, Al Thresholds C,
B, —0.713133 —8.344479 0.510332 —0.193877 —0.160070 —1.085222 —5.721345
B, —0.413454 —5.244912 —0.041913 —0.082980 —5.798004 —0.249638 5.869261
B, —4.122913 0.550004 —0.330824 -7.180707 —0.839873 —0.514240 —2.247042
B, 7.087600 0.112555 —2.498871 1.212016 0.705067 —0.434963 0.531882
B, —7.317007 —0.448445 0.410964 0.585086 8.079370 —1.042037 —1.492455
B, 0.160550 1.529279 —1.183294 —0.502343 —0.465771 —2.952801 —4.029602
B, 1.117842 1.872316 —0.581536 0.484731 —3.781395 0.933481 1.138486
B, —0.554405 —0.690276 1.121064 1.230760 —9.053371 4.847096 4.478941
B, 4.334997 0.112802 —2.150803 6.066226 —0.373994 —0.439049 1.255853
B 8.816632 —0.511345 —0.904907 —1.065835 —1.260757 0.101028 0.697668

Thresholds - - - - - - 0.561587
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Fig. 4. Three overlapped peaks and corresponding first-derivative
curve.

individual peak arbitrarily, and hypothesize that all
individual peaks are asymmetric and all widths are
equal; thus, only 4n—3—2(n—1)=2n—1 parame-
ters are free and the same number of characteristic
dimensionless parameters should be evaluated from
the overlapped peaks to determine the area per-
centage of an individual peak. Usually, there exists
2n inflection points on the curve composed of n
overlapped peaks, so in the intensity direction 2n — 1
dimensionless parameters from the 2n extreme points
on the first-derivative curve can be obtained to meet
the requirements of the characteristic parameters, just
as the p;, p, and p, do in the case when two peaks
are overlapped. For example, when three peaks are
overlapped, we can obtain five dimensionless param-
eters taking the following form (g, ..., g5) from the
six extreme points on the first-derivative curve
shown in Fig. 4. Thus, the proposed method can also
be used in cases when two more peaks are over-
lapped, but this paper only highlights the evaluation
of the individual peak area in the case when only two
peaks are overlapped.

5. Comparison between different methods

In order to compare the accuracy of the ANN
method with other conventional methods such as
vertical line splitting and curve fitting, a series of
experiments was conducted. The experimental data

was taken on a chromatographic meter by injecting
pure reagent twice with different known amounts in
a short time to make artificially overlapped peaks.
Because the overlapped two peaks correspond to the
same substance under identical operating conditions,
the area proportion of the overlapped two peaks
should be equal to the known proportion of dosage
injected. A general comparison among the three
kinds of methods was made after performing the
same set of experiments by using different samples
under different operation conditions. To save space
here, only one set of these results is listed in Table 2.

From the experiments we conducted, the following
conclusions can be reached.

5.1. Vertical line splitting method

Splitting the overlapped peaks via a vertical line
through the overlapped peaks valley point, the
accuracy of this method varies in different situations
and becomes rather poor when two peaks are severe-
ly overlapped, are very different in size, or are quite
asymmetrical [{4—6]. Moreover, when there is only
one maximal point on the overlapped peaks, this
method is wholly incompetent due to its simple
principle.

5.2, Curve-fitting method

A good function model should be first selected to
depict the peak, but different functions may lead to
different deconvolution results. In fact, this method
is so sensitive to the model selected that if the model
slightly disagrees with the real peak shape the
deconvolution results will diverge. Even if the
function selected is the same but a different optimi-
zation algorithm or different initial values of the
parameters are used, the deconvolution results may
be much different because of the local minimal
points in the object function [7,8]. Therefore, the
curve-fitting method is hardly applicable in practice
for general purposes. In this paper, the AGD function
was used to model the chromatography peak and the
Marquardt algorithm [9] was used to optimize the
function parameters. Because the initial values of the
function parameters are difficult to assign properly,
the curve-fitting method did not only cost a consider-
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Table 2

Comparison of three kinds of methods for deconvolving overlapped peaks

Proportion of Area Relative Area Relative Area Relative

injection proportion error proportion error proportion error

dosage by the ANN (%) by vertical (%) by curve (%)

line splitting fitting

10.00 9.61 39 2.33 76.7 2.38 76.2
9.00 8.63 4.1 5.48 39.1 3.98 55.8
8.00 8.21 2.6 4.24 47.0 3.21 59.9
7.00 6.83 24 3.81 45.6 3.14 55.1
6.00 6.15 25 4.17 30.5 4.11 31.5
5.00 5.23 4.6 3.04 392 4.82 3.6
4.00 4.21 53 2.30 425 2.06 48.5
3.00 291 3.0 2.15 283 1.94 353
2.00 2.07 3.5 1.36 32.0 1.36 320
1.00 1.04 4.0 0.40 60.0 0.73 27.0
0.50 0.52 4.0 0.29 420 0.23 54.0
0.33 0.32 3.0 025 242 0.20 394
0.25 0.27 8.0 024 40 0.36 44.0
0.20 0.22 10.0 0.17 15.0 0.24 20.0
0.17 0.16 59 0.18 5.9 0.28 64.7
0.14 0.14 0.0 0.14 0.0 0.19 35.7
0.13 0.12 7.7 0.13 0.0 0.50 284.6
0.11 0.10 9.1 0.12 9.1 0.15 354
0.10 0.10 0.0 0.11 10.0 0.21 110.0

Average error 44 29.0 58.6

able amount of computing time for the iterations, but
it also sometimes gave results which were not
reasonable; this may be due to the fact that the
optimization of the parameters is easily trapped in
the local minimal point.

5.3. ANN method

The accuracy of the ANN method is much better
no matter how severe the degree of overlap of the
two individual peaks is. Because the trained ANN
needs only a little computing time to process the
input pattern, the ANN deconvolving method is
suited for use in real-time applications. In order to
put the ANN method into practice, the positions and
heights of the inflection points on the first-derivative
curve should be determined exactly at first. Fortu-
nately, the peak-detecting method based on the
quasi-second derivatives [10] and the high-fidelity
filtering method based on medians [11], both pro-

posed by the same authors, will satisfy this require-
ment.
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